stream_hacks to main #2

Merged
skeh merged 8 commits from stream_hacks into main 2024-12-11 03:22:13 +00:00
8 changed files with 251 additions and 56 deletions

View File

@ -0,0 +1,42 @@
'''
«^^^æ
¼@æ@@ÑÑÑÑDÑÑæ
ÑÑDÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑD
é]ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑφ
]ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ]Ö
]]DÑÑDÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑDu
ÑÑ]ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ]D
Ñ]ÑÑÑÑÑÑÑDÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑD]ÑÑDÑÑÑÑ]]ÑÑÑM
ÑÑÑÑÑÑÑÑMÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑh oh, here's a ███████
ÑÑÑDѽÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑDÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑh a fun fact
.ÑÑÑDÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑUÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑѵMÑ'╬Ñ╬╫ÑÑÑÑÑÑ╬╬ÑÑÑÑÑÑDÑÑ╙╝╜,▄╕╢ÑÑÑÑÑÑÑÑÑÑ╬▐██████████████████████████████████
ÑÑÑÑæÖ ÑΩLÑDMÑÑÑÑÑÑMÑÑÑÑÑÑÑÑφΦÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑ M D DÑÑÑÑÑuÑÑMÑDÑÑÑÑM`φΦÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑDM LM ÑÑÑÑÑ Ñ~²ÑÑÑÑѼ'╔æ╢╬ÑÑÑÑÑÑÑÑÑÑÑ┐▀████████████████████████████████
ÑMÑÑÑÑÑù"`` "²ÑÑÑÑÑhLѵmªªDÑÑÑÑÑÑÑÑÑÑÑÑÑÑ,
^ÑÑÑÑÑÑMH ,h ÑÑÑÑÑh ÑM ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ΓÑÑÑÑÑDM '╬▓w ÑÑÑÑÑÑÑÑÑÑÑÑÑD╬`▄███████████████████████████████
ÑÑÑÑÑÑÑ , ÑÑÑÑÑÑÑÑÑÑÑÑ-5
ÑÑÑÑÑÑÑÑ DÑÑÑÑÑÑÑÑÑÑæÑÑÑÑHß
ÑÑÑÑÑÑÑ ¥ ΦæÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ^
ÑÑÑÑ ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ|
ÑMÑÑÑÑJ`ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑM,
µ,ÑÑÑDDDÑÑÑÑÑÑÑÑÑÑDMDÑÑ
ÑÑÑÑ "▀█████▄╢M███████████▀▀║ÑÑÑÑÑÑÑÑ╬╟ÑÑ╬ⁿ╬ÑÑ╝╓████████████████████████████████
ÑÑM `"▀▀▀▀▀▀▀▀"` . ÑÑÑMÑMÑ^
.,#╓██ ╣╣╜}-,▄▌╬M▄███w▄███████████████████████████████████
,7 ²
,«]«]J
µj] j Å
] r`y
i do not ` jr
think j H`""` ]«]«¥
L,¥"Vµ ▓╣▌j░░U ░ ░ ░,µ⌐Ö║██████████████████████████████████████████████
, ½`"▀▄ ▌▌/δ▀DxH*¥#==═K*"xd
`µ^ ` "░ ,«⌂]"M*"""^▄▄▓╙▓▐█████████████████████████████████████████████
D,,«-,^ó],Γ
Ω]`j ]j,"]H╓⌐▓▓▓▓▓▓▓▓▓▓▓▓µ▐█████████████████████████████████████████████
'''

View File

@ -1,4 +1,5 @@
import cv2 import cv2
import matplotlib.pyplot as plt
from . import OutputProcess from . import OutputProcess
from ovtk_track import types from ovtk_track import types
@ -14,7 +15,10 @@ class Process(OutputProcess):
super().__init__(*args) super().__init__(*args)
def setup(self): def setup(self):
pass self.fig = plt.figure()
self.axes = self.fig.add_subplot(projection='3d')
self.axes.view_init(15, 0, vertical_axis='y')
plt.show(block=False)
def send(self): def send(self):
landmarks = self._inputs['landmarks'].get_nowait() landmarks = self._inputs['landmarks'].get_nowait()
@ -31,8 +35,15 @@ class Process(OutputProcess):
landmarks.draw(image, frame, label=False, color=(130, 130, 130)) landmarks.draw(image, frame, label=False, color=(130, 130, 130))
if skeleton is not None: if skeleton is not None:
skeleton.draw(image, frame) skeleton.draw(self.axes)
cv2.imshow("face", frame) cv2.imshow("face", frame)
plt.draw()
# event loops
plt.pause(0.0001)
if cv2.waitKey(1) & 0xFF == ord('q'): if cv2.waitKey(1) & 0xFF == ord('q'):
raise KeyboardInterrupt('User requested stop') raise KeyboardInterrupt('User requested stop')
for artist in plt.gca().lines + plt.gca().collections:
artist.remove()

View File

@ -32,6 +32,26 @@ face_mesh_map = {
], ],
} }
body_map = {
LANDMARK_TYPES.SHOULDER | LANDMARK_TYPES.LEFT: [11],
LANDMARK_TYPES.SHOULDER | LANDMARK_TYPES.RIGHT: [12],
LANDMARK_TYPES.ELBOW | LANDMARK_TYPES.LEFT: [13],
LANDMARK_TYPES.ELBOW | LANDMARK_TYPES.RIGHT: [14],
LANDMARK_TYPES.HIP | LANDMARK_TYPES.LEFT: [23],
LANDMARK_TYPES.HIP | LANDMARK_TYPES.RIGHT: [24],
LANDMARK_TYPES.KNEE | LANDMARK_TYPES.LEFT: [25],
LANDMARK_TYPES.KNEE | LANDMARK_TYPES.RIGHT: [26],
LANDMARK_TYPES.ANKLE | LANDMARK_TYPES.LEFT: [27],
LANDMARK_TYPES.ANKLE | LANDMARK_TYPES.RIGHT: [28],
LANDMARK_TYPES.ANKLE | LANDMARK_TYPES.LEFT: [27],
LANDMARK_TYPES.ANKLE | LANDMARK_TYPES.RIGHT: [28],
}
# SEE YEAH THESE MAKE SENSE GOOGLE WHAT THE HELL # SEE YEAH THESE MAKE SENSE GOOGLE WHAT THE HELL
hand_mesh_map = {LANDMARK_TYPES.HAND | LANDMARK_TYPES.WRIST: [0]} hand_mesh_map = {LANDMARK_TYPES.HAND | LANDMARK_TYPES.WRIST: [0]}
_finger_map = { _finger_map = {

View File

@ -2,7 +2,7 @@ import mediapipe
import numpy as np import numpy as np
from ovtk_track.transform import TransformProcess from ovtk_track.transform import TransformProcess
from ovtk_track.transform.solve.mediapipe import face_mesh_map, hand_mesh_map from ovtk_track.transform.solve.mediapipe import face_mesh_map, hand_mesh_map, body_map
from ovtk_track import types from ovtk_track import types
from ovtk_track.types.Landmarks import LANDMARK_TYPES from ovtk_track.types.Landmarks import LANDMARK_TYPES
@ -83,6 +83,17 @@ class Process(TransformProcess):
available.append((right_hand_landmarks, mix_maps(hand_mesh_map, LANDMARK_TYPES.RIGHT))) available.append((right_hand_landmarks, mix_maps(hand_mesh_map, LANDMARK_TYPES.RIGHT)))
if results.pose_landmarks:
raw_landmarks = results.pose_landmarks.landmark
body_landmarks = np.empty((33, 3), dtype=np.float32)
for i in range(33):
body_landmarks[i][0] = raw_landmarks[i].x
body_landmarks[i][1] = raw_landmarks[i].y
body_landmarks[i][2] = raw_landmarks[i].z
available.append((body_landmarks, body_map))
if available: if available:
avail_landmarks, maps = zip(*available) avail_landmarks, maps = zip(*available)
combo_map = combine_maps(zip(maps, (array.shape[0] for array in avail_landmarks))) combo_map = combine_maps(zip(maps, (array.shape[0] for array in avail_landmarks)))

View File

@ -1,6 +1,7 @@
import math import math
import numpy as np import numpy as np
from scipy.spatial.distance import cdist
from .. import TransformProcess from .. import TransformProcess
from ovtk_track.types import Quaternion, Point3d from ovtk_track.types import Quaternion, Point3d
@ -24,9 +25,97 @@ class Process(TransformProcess):
self.normal = np.array(normal, dtype=float) self.normal = np.array(normal, dtype=float)
self.up = np.array(vec_perp(normal), dtype=float) self.up = np.array(vec_perp(normal), dtype=float)
# REVIEW: See calc_eye. These probably need to change based on normal / up.
# Or maybe they dont and we just rotate the output quaternion?
# Ugh. The code works for now, but i no understand....
self.SIN_LEFT_THETA = 2 * np.sin(np.pi / 2)
self.SIN_UP_THETA = np.sin(np.pi / 6)
def setup(self): def setup(self):
pass pass
def calc_head(self, landmarks):
# REVIEW: This doesnt really work quite right!! look + roll arent mixing as expected
# Vector pointing from head center to nose
nose = Landmarks.to_numpy(landmarks[LANDMARK_TYPES.NOSE | LANDMARK_TYPES.TIP]).mean(axis=0)
head_center = Landmarks.to_numpy(landmarks[LANDMARK_TYPES.FACE | LANDMARK_TYPES.OUTLINE]).mean(axis=0)
look_vec = (nose - head_center)
look_vec /= np.linalg.norm(look_vec)
# Vector pointing left to right across the face
eye_center_l = Landmarks.to_numpy(landmarks[LANDMARK_TYPES.EYE | LANDMARK_TYPES.LEFT]).mean(axis=0)
eye_center_r = Landmarks.to_numpy(landmarks[LANDMARK_TYPES.EYE | LANDMARK_TYPES.RIGHT]).mean(axis=0)
roll_vec = (eye_center_l - eye_center_r)
roll_vec /= np.linalg.norm(roll_vec)
# Quat that rotates from normal to head center -> nose vec
look = Quaternion(np.dot(look_vec, self.normal), *np.cross(look_vec, self.normal))
look.w += look.magnitude()
look = look.normalize()
# Quat that represents a rotation around the roll axis (i think??)
roll_angle = np.sum(roll_vec * self.up)
roll = Quaternion(math.cos(roll_angle), *(self.normal * math.sin(roll_angle)))
roll = roll.normalize()
combo = look + roll
combo = combo.normalize()
return combo, head_center
def calc_eye(self, landmarks):
# Get poi
corners = np.empty((2, 2, 3), dtype=np.float32)
centers = np.empty((2, 3), dtype=np.float32)
pupils = np.empty((2, 3), dtype=np.float32)
cross_heights = np.empty((2), dtype=np.float32)
for i, side in enumerate([LANDMARK_TYPES.LEFT, LANDMARK_TYPES.RIGHT]):
# Find corners by searching for points with the largest distance from each other
# REVIEW: These *should* will always be the same points in the map - make a landmark type selector?
eye_outline = Landmarks.to_numpy(landmarks[LANDMARK_TYPES.EYE | LANDMARK_TYPES.OUTLINE | side])
hdist = cdist(eye_outline, eye_outline, metric='euclidean')
best_pair = np.unravel_index(hdist.argmax(), hdist.shape)
corners[i] = eye_outline[best_pair[0]], eye_outline[best_pair[1]]
# Get height of eye (relative to a line passing through each corner)
cross_heights[i] = np.array([
np.linalg.norm(np.cross(corners[i][1]-corners[i][0],
corners[i][0]-point))
/ np.linalg.norm(corners[i][0]-corners[i][1])
for point in eye_outline
]).max()
centers[i] = eye_outline.mean(axis=0)
pupils[i] = Landmarks.to_numpy(landmarks[LANDMARK_TYPES.IRIS | side]).mean(axis=0)
# Calculate important distances based on POI
eye_length = np.linalg.norm(np.diff(corners, axis=1), axis=(2, 1))
ic_distance = np.linalg.norm(pupils - centers, axis=1)
zc_distance = np.linalg.norm(pupils - corners[:, 1], axis=1)
aspect_ratio = 1 / (cross_heights / eye_length)
# Takes above and spits out spherical coordiates of pupil (relative to camera)
# Black magic as far as i can comprehend
# Copied in large part from https://github.com/1996scarlet/OpenVtuber/blob/970229d3a5ebe14a7519352da039d00a0b87e2d9/service/TFLiteIrisLocalization.py#L101
s0 = (corners[1, :, 1] - corners[0, :, 1]) * pupils[:, 0]
s1 = (corners[1, :, 0] - corners[0, :, 0]) * pupils[:, 1]
s2 = corners[1, :, 0] * corners[0, :, 1]
s3 = corners[1, :, 1] * corners[0, :, 0]
delta_y = (s0 - s1 + s2 - s3) / eye_length / 2
delta_x = np.sqrt(abs(ic_distance**2 - delta_y**2))
delta = np.array((delta_x * self.SIN_LEFT_THETA,
delta_y * self.SIN_UP_THETA))
delta /= eye_length
theta, pha = np.arcsin(delta)
inv_judge = zc_distance**2 - delta_y**2 < eye_length**2 / 4
theta[inv_judge] *= -1
# Convert spherical coordiates to quaternions
# Based on https://github.com/moble/quaternion/blob/8f6fc306306c45f0bf79331a22ef3998e4d187bc/src/quaternion/__init__.py#L599
quats = np.array([np.cos(pha/2) * np.cos(theta/2),
-np.sin(pha/2) * np.sin(theta/2),
np.cos(pha/2) * np.sin(theta/2),
np.sin(pha/2) * np.cos(theta/2)]).T
quat_arr = [Quaternion(*quat) for quat in quats]
return quat_arr, aspect_ratio
def process(self): def process(self):
landmarks = self._inputs['landmarks'].get() landmarks = self._inputs['landmarks'].get()
skeleton = None skeleton = None
@ -34,46 +123,42 @@ class Process(TransformProcess):
joints = {} joints = {}
if landmarks.has(LANDMARK_TYPES.FACE): if landmarks.has(LANDMARK_TYPES.FACE):
# Get head look / pos # Get head look / pos
nose = Landmarks.to_numpy(landmarks[LANDMARK_TYPES.NOSE | LANDMARK_TYPES.TIP]).mean(0) look_quat, head_pos = self.calc_head(landmarks)
head_center = Landmarks.to_numpy(landmarks[LANDMARK_TYPES.FACE | LANDMARK_TYPES.OUTLINE]).mean(0) eye_quats, eye_aspect = self.calc_eye(landmarks)
look_vec = (nose - head_center)
eye_center_l = Landmarks.to_numpy(landmarks[LANDMARK_TYPES.EYE | LANDMARK_TYPES.LEFT]).mean(0) head_joint = Joint(Point3d(*head_pos), look_quat, attr=dict(eye_rot=eye_quats, eye_aspect=eye_aspect))
eye_center_r = Landmarks.to_numpy(landmarks[LANDMARK_TYPES.EYE | LANDMARK_TYPES.RIGHT]).mean(0)
roll_vec = (eye_center_l - eye_center_r)
look_vec /= np.linalg.norm(look_vec)
roll_vec /= np.linalg.norm(roll_vec)
roll_angle = np.sum(roll_vec * self.up)
roll = Quaternion(math.cos(roll_angle), * self.normal * math.sin(roll_angle))
roll = roll.normalize()
look = Quaternion(np.dot(look_vec, self.normal), *np.cross(look_vec, self.normal))
look.w += look.magnitude()
look = look.normalize()
combo = look + roll
combo = combo.normalize()
# Get eye data
marks_left = Landmarks.to_numpy(landmarks[LANDMARK_TYPES.EYE | LANDMARK_TYPES.LEFT])
marks_right = Landmarks.to_numpy(landmarks[LANDMARK_TYPES.EYE | LANDMARK_TYPES.RIGHT])
range = np.array([marks_left.max(axis=0) - marks_left.min(axis=0),
marks_right.max(axis=0) - marks_right.min(axis=0)])
delta = np.array([eye_center_l - Landmarks.to_numpy(landmarks[LANDMARK_TYPES.IRIS | LANDMARK_TYPES.CENTER | LANDMARK_TYPES.LEFT]).mean(0),
eye_center_r - Landmarks.to_numpy(landmarks[LANDMARK_TYPES.IRIS | LANDMARK_TYPES.CENTER | LANDMARK_TYPES.RIGHT]).mean(0)])
delta /= range
try:
eye_aspect_ratio = range[::, 0] / range[::, 1]
except ZeroDivisionError:
eye_aspect_ratio = None
head_joint = Joint(Point3d(*head_center), combo, dict(look_delta=delta, eye_aspect_ratio=eye_aspect_ratio))
joints[JOINT_TYPES.HEAD] = head_joint joints[JOINT_TYPES.HEAD] = head_joint
if landmarks.has(LANDMARK_TYPES.SHOULDER):
shoulder_l = Landmarks.to_numpy(landmarks[LANDMARK_TYPES.SHOULDER | LANDMARK_TYPES.LEFT]).mean(axis=0)
shoulder_r = Landmarks.to_numpy(landmarks[LANDMARK_TYPES.SHOULDER | LANDMARK_TYPES.RIGHT]).mean(axis=0)
joints[JOINT_TYPES.SHOULDER_L] = Joint(Point3d(*shoulder_l), Quaternion.identity())
joints[JOINT_TYPES.SHOULDER_R] = Joint(Point3d(*shoulder_r), Quaternion.identity())
if landmarks.has(LANDMARK_TYPES.ELBOW):
elbow_l = Landmarks.to_numpy(landmarks[LANDMARK_TYPES.ELBOW | LANDMARK_TYPES.LEFT]).mean(axis=0)
elbow_r = Landmarks.to_numpy(landmarks[LANDMARK_TYPES.ELBOW | LANDMARK_TYPES.RIGHT]).mean(axis=0)
joints[JOINT_TYPES.ELBOW_L] = Joint(Point3d(*elbow_l), Quaternion.identity())
joints[JOINT_TYPES.ELBOW_R] = Joint(Point3d(*elbow_r), Quaternion.identity())
if landmarks.has(LANDMARK_TYPES.HIP):
hips = Landmarks.to_numpy(landmarks[LANDMARK_TYPES.HIP]).mean(axis=0)
joints[JOINT_TYPES.HIPS] = Joint(Point3d(*hips), Quaternion.identity())
# Synthizise other joints from existing data
if not joints.get(JOINT_TYPES.CHEST):
if landmarks.has(LANDMARK_TYPES.SHOULDER) and landmarks.has(LANDMARK_TYPES.HIP):
chest = Landmarks.to_numpy(landmarks[LANDMARK_TYPES.SHOULDER, LANDMARK_TYPES.HIP]).mean(axis=0)
joints[JOINT_TYPES.CHEST] = Joint(Point3d(*chest), Quaternion.identity())
elif joints.get(JOINT_TYPES.HEAD):
chest_center = joints[JOINT_TYPES.HEAD].pos.as_np()
chest_center = np.power(chest_center, 3) / (1e3 + np.power(chest_center, 2))
chest_center -= [0, 100, 0]
chest_rot = Quaternion.identity().slerp(joints[JOINT_TYPES.HEAD].rot, 0.1)
joints[JOINT_TYPES.CHEST] = Joint(Point3d(*chest_center), chest_rot)
skeleton = Skeleton(joints) skeleton = Skeleton(joints)
self._outputs['skel'].send(skeleton) self._outputs['skel'].send(skeleton)

View File

@ -17,6 +17,17 @@ class LANDMARK_TYPES(Flag):
LIPS = auto() LIPS = auto()
CHIN = auto() CHIN = auto()
# Body
SHOULDER = auto()
ELBOW = auto()
HIP = auto()
KNEE = auto()
# Feet tracking lmao
ANKLE = auto()
HEEL = auto()
TOE_INDEX = auto()
# Hand # Hand
HAND = auto() HAND = auto()
WRIST = auto() WRIST = auto()
@ -71,8 +82,9 @@ class Landmarks(Type):
return False return False
def draw(self, image, canvas, color=(255, 255, 255), label=True): def draw(self, image, canvas, color=(255, 255, 255), label=True, filter=None):
for i, (x, y, z) in enumerate(point.project_to_image(image) for point in self.points): points = self[filter] if filter else self.points
for i, (x, y, z) in enumerate(point.project_to_image(image) for point in points):
if x > image.width or x < 0 or y > image.height or y < 0: if x > image.width or x < 0 or y > image.height or y < 0:
continue continue

View File

@ -1,7 +1,7 @@
from dataclasses import dataclass from dataclasses import dataclass
import numpy as np import numpy as np
from scipy.spatial.transform import Rotation from scipy.spatial.transform import Rotation, Slerp
from .Type import Type from .Type import Type
@ -12,6 +12,10 @@ class Quaternion(Type):
y: float y: float
z: float z: float
@classmethod
def identity(cls):
return cls(1, 0, 0, 0)
def __mul__(self, q): def __mul__(self, q):
if isinstance(q, self.__class__): if isinstance(q, self.__class__):
product = self.as_np() * q.as_np() product = self.as_np() * q.as_np()
@ -45,6 +49,16 @@ class Quaternion(Type):
def conjugate(self): def conjugate(self):
return self.__class__(self.w, -self.x, -self.y, -self.z) return self.__class__(self.w, -self.x, -self.y, -self.z)
def slerp(self, other, t):
r = Rotation.from_quat([
[self.x, self.y, self.z, self.w],
[other.x, other.y, other.z, other.w],
])
slerp = Slerp([0, 1], r)
x, y, z, w = slerp([t]).as_quat()[0]
return self.__class__(w, x, y, z)
def draw(self, canvas, origin): def draw(self, canvas, origin):
raise NotImplementedError() raise NotImplementedError()

View File

@ -2,8 +2,6 @@ from dataclasses import dataclass, field
from enum import Enum from enum import Enum
import typing import typing
import cv2
from .Type import Type from .Type import Type
from .Point3d import Point3d from .Point3d import Point3d
from .Quaternion import Quaternion from .Quaternion import Quaternion
@ -12,20 +10,26 @@ from .Quaternion import Quaternion
class JOINT_TYPES(Enum): class JOINT_TYPES(Enum):
HEAD = 'head' HEAD = 'head'
CHEST = 'chest' CHEST = 'chest'
HIPS = 'hips'
SHOULDER_L = 'shoulder_l' SHOULDER_L = 'shoulder_l'
ELBOW_L = 'elbow_l' ELBOW_L = 'elbow_l'
WRIST_L = 'wrist_l'
HIP_L = 'hip_l'
KNEE_L = 'knee_l' KNEE_L = 'knee_l'
FOOT_L = 'foot_l' FOOT_L = 'foot_l'
WRIST_L = 'wrist_l'
SHOULDER_R = 'shoulder_r' SHOULDER_R = 'shoulder_r'
ELBOW_R = 'elbow_r' ELBOW_R = 'elbow_r'
WRIST_R = 'wrist_r'
HIP_R = 'hip_r'
KNEE_R = 'knee_r' KNEE_R = 'knee_r'
FOOT_R = 'foot_r' FOOT_R = 'foot_r'
WRIST_R = 'wrist_r'
default_colors = [
[255, 0, 0], [0, 255, 0], [0, 0, 255],
[255, 255, 0], [255, 0, 255], [0, 255, 255],
[128, 255, 0], [255, 0, 128], [0, 255, 128],
]
@dataclass @dataclass
@ -48,14 +52,10 @@ class Skeleton(Type):
# TODO: More intelegent merge # TODO: More intelegent merge
return Skeleton(self.joints + other.joints) return Skeleton(self.joints + other.joints)
def draw(self, image, canvas, color=(255, 255, 255)): def draw(self, axes, colors=default_colors):
for i, joint in enumerate(self.joints.values()): xs, ys, zs = zip(*(joint.pos.as_np() for joint in self.joints.values()))
x, y, z = joint.pos.project_to_image(image) color = [[v / 255 for v in color] for color in colors[:len(xs)]]
axes.scatter(xs, ys, zs, c=color)
if x > image.width or x < 0 or y > image.height or y < 0:
continue
cv2.circle(canvas, (x, y), 1, color, -1, cv2.LINE_AA)
def serialize(self): def serialize(self):
return {type.value: joint for type, joint in self.joints.items()} return {type.value: joint for type, joint in self.joints.items()}